Academic Study Program PHYSICS

University of Montenegro, Faculty of Sciences and Mathematics, Depart. of Physics

Name of the	Nuclear and Particle Physics		
Study	Doctorate studies in Physics		
Programme			
Level of the	1 ^{rh} vear, 1 th semester	Number of	
course:		ECTS credits:	
Contact hours:	4 hours lectures per week, 40 hours in	T (11	150 hours in
	semester for consultations	Iotal hours:	semester
G4 4	52 hours - lectures, 8 hours - exams, 40 hours - consultations, 50 hours - individual		
Structure:	study.		
Language:	Montenegrin or English		
Prerequisites:	Nuclear Physics		
Aim:	This course is aimed to upgrade students' kno	wledge obtained a	t academic studies of
	Physics, and to make them acquainted with the unsolved questions of nuclear and		
	particle physics.		
	Basic concepts (relativity and antiparticles, symmetries and conservation laws,		
	interactions and Feynman diagrams, particle exchange – forces and potentials,		
	observable quantities – cross sections and decay rates)		
	Nuclear phenomenology (mass and binding energy, charge and matter distribution,		
	nuclear instability, radioactive decay, nuclear reactions).		
	Particle phenomenology (leptons – multiplets and numbers, neutrino masses and		
	oscillations, universalne lepton interactions; quarks – generations and numbers;		
	hadrons – charge multiplets, quark model spectroscopy, masses and magnetic		
	moments).		
	Experimental methods (accelerators and beams, particle interactions with matter,		
	particle detectors).		
	Strong interaction (quantum chromodynamics, bound states, strong coupling constant		
	and asymptotic freedom, jets and gluons, deep inelastic scattering and nucleon		
Contents:	Siluciule).		
	<u>Electroweak interaction</u> (symmetries of the weak interaction, spin structure of the weak interaction W^{\pm} i Z^0 bosons semilentoic decays neutrino scattering neutral		
	meson decays, neutral currents and the unified theory)		
	Models and theories of nuclear physics (nucleon-nucleon potential Fermi gas model		
	shell model non-spherical nuclei alpha decay beta decay gamma emision and		
	internal conversion).		
	Applications of nuclear physics (fission, fusion, biomedical applications).		
	Unsolved questions of nuclear physics (structure of hadrons and nuclei, quark-gluon		
	plasma, simmetries and standard model, nuclear medicine, nuclear energy, nuclear		
	waste)		
	Unsolved questions of particle physics (Higgs boson, grand unification,		
	supersymmetry, particle astrophysics – neutrino astrophysics, dark matter, matter-		
	antimatter assymetry).		
Main texts:	B.R. Martin: "Nuclear and Particle Physics", .	John Wiley & Son	s, 2006.
Further	Iournals on nuclear and particle physics		
readings.	- journals on nuclear and particle physics		
Teaungs.	- Capacity to learn:		
Competences to be developed:	Understanding of nuclear phonomene:		
	- Onderstanding of nuclear phenomena,		
	- Literature search.		
Methods of	Lectures and consultations withh the active participation of students.		
teaching:		_	
Examination	Two colloquia, estimation of individual activity on lectures and consultations,		
	midterm examination, final exam.		
Methods of self-	Results of exams, direct communications with	n the students.	
evaluation:			